Knowledge & Skills
Mechanical Engineering, 6th of May 2022, 010004

Contribution to the development of a method for predicting the multiscale geometry of tribofinished parts

Irati Malkorra*

Full access 

on KS-Portal

*IRT-M2P, 4 Rue Augustin Fresnel, 57070 Metz, France

**Ecole Centrale de Lyon-ENISE, University of Lyon, LTDS CNRS UMR 5513, 58 Rue Jean Parot, 42000 Saint-Etienne, France

Corresponding author: [email protected]



This thesis is based on the context of roughness reduction of Inconel718 parts produced by additive manufacturing (SLM) using the drag finishing technique. The objective was to understand the mechanisms of action of the abrasive media on the surfaces to polish. In addition, the complexity and high added value of the parts produced by additive manufacturing, combined with the small-scale production context, implies a major need for modelling to predict the optimal processing conditions. As the high roughness levels of SLM parts lead to long processing times to reach the specified roughness, the challenge of applying the drag finishing process to polish parts is actually to predict the evolution of the shape of the parts. Thus, this thesis focused on the development of a modelling tool (at the macroscopic scale) of the action of abrasive media flow (considered as a continuum) around a part to be treated. ALE and CEL models of this fluid-structure interaction have been developed. To feed these simulations, a method for characterising the rheological properties of the media was proposed, inspired by the techniques used with geomaterials in civil engineering. This method, known as “triaxial test”, showed the importance of the geometry of an elementary media on the rheological behaviour of the bulk media. In fact, the numerical model allowed to quantify the effect of the media type on the mechanical action induced around the part (normal and tangential stresses, sliding velocity). These local physical parameters allowed us to set up a method for predicting the evolution of the geometry of the part (i.e. the wear of the part). At the mesoscopic scale, these physical parameters also provided a better understanding of the mechanisms of media reagarding the angle of incident on the surface, and in particular whether material removal or plastic deformation was dominant.

Creative Commons License


Mechanical Engineers - Researchers   


45 minutes 

French with FR subtitles

video + pdf  

Video abstract


I. Malkorra, 2022, « Contribution to the development of a method for predicting the multiscale geometry of tribofinished parts », Knowledge and Skills, ISSN 2800-2083, Mechanical Engineering, 010004,

Contribution to the development of a method for predicting the multiscale geometry of tribofinished parts
by Dr. Eng. Irati Malkorra 


To get full access to this presentation, click on "Full Access" and use your Apprentice account credentials to unlock it. If you don't have yet an Apprentice account on KS-Portal, please create your free account by clicking on "Create account". 

To submit your video to Knowledge and Skills journal for publication via your Talent account inside KS-Portal, click here:

To get an overview to our previous publications inside Knowledge and Skills Journal, click here:

Your opinion is valuable!

As we are adopting the Lean Startup principle, your opinion as a user is very important to us to ameliorate continuously our services and to make KS-Portal respond to your needs. Do not hesitate to give your feedback!

Follow us on social media and join our community on LinkedIn, Facebook and Twitter


Knowledge and Skills uses minimum necessary cookies to optimize the website’s performance. Refusing them may disturb or block your access to some of our services. For further details about this website cookies policy and how to manage them, please see "Cookies Policy" page.